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The process of collapse of a bubble containing wet vapor in hydrophobic liquid in the presence of volumetric
condensation and external heat transfer is considered. It is shown that external heat transfer can substantially
affect the dynamics of the process and damp a shock increase of pressure greatly.

The processes of collapse of vapor bubbles in liquid metal take place in apparatuses of direct energy conver-
sion, in particular, in ejector compressors with a two-phase, two-component working body, with bubble compression
occurring in a liquid metal flow. Shock phenomena which bring a threat to the flow part of the structure can occur in
bubble collapse; thus, these problems require investigation [1].

It should be noted that the problem of collapse of a cavitation bubble has caught the attention of researchers
since Rayleigh, and a number of papers are devoted to it. For example, in [2], dynamic and heat- and mass-transfer
processes in collision and growth of vapor bubbles in the proper liquid were considered; in this case, the vapor in the
bubble was dry and its condensation took place on the phase interface of the bubble. Unfortunately, this scheme of
vapor condensation does not describe the processes of vapor bubble collapse in hydrophobic liquid — low-temperature
liquid metal, e.g., indium–bismuth eutectics, serves as an example of this liquid. By virtue of this, in what follows we
consider another model of phase transition, where condensation of vapor, e.g., freon, takes place inside a bubble on
microdroplets of its own liquid.

Thermophysical processes accompanying the collapse of a vapor bubble can dominate over hydrodynamic
processes. In fact, the phase interface, which moves at a velocity w0, during the process period ∆τ shifts at a distance
w0∆τ and changes the bubble volume by ∆V = 4πa2w0∆τ. In isobaric-isothermal condensation, the change in the vapor
mass is ∆m = 4πa2w0∆τρg and the heat of phase transition Qg = l∆m is released. During the same period of time, the
heat QΣ = (lliq ⁄ a)(Tg − Tliq)4πa2∆τ is withdrawn by convection from the phase interface to the surrounding liquid.

It is evident that, when Qg << QΣ, external heat transfer does not influence the processes in the bubble itself
and the bubble collapses in the dynamic mode.

When Qg >> QΣ, external heat transfer does not manage to withdraw the heat of phase transition and the bub-
ble becomes adiabatic. The collapse of the bubble is impossible under these conditions — damping oscillations origi-
nate, on cessation of which the condensation of vapor occurs in a purely thermal mode.

Finally, when Qg C QΣ, the bubble collapse is determined by the inertia of dynamic and thermophysical proc-
esses.

The ratio of these heat fluxes leads to the following parameter of the problem:

Qg

QΣ
 = 

aw0

λliq

ρliqcliq

 
1

cliq (Tg − Tliq)
l

 
ρliq

ρg

 = 
Pe

Ja
 .

When Pe/Ja << 1, the bubble collapses in the inertial mode, when Pe/Ja >> 1 — in the thermal mode, and
when Pe ⁄ Ja D 1, the bubble collapse is formed by both dynamic and thermophysical processes.
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We derive the equation of heat influx for a bubble with wet vapor. From the first law of thermodynamics for

a simple thermodynamic system written for 1 m3 of substance, ρgδq = ρgdig − dp; after differentiation with respect to

time τ and with account for the equality 
d
dτ
(ρgδq) = −div q we obtain

ρg 
dig
dτ

 = − div q + 
dp

dτ
 . (1)

From the continuity equation for wet vapor we find the derivative dρg
 ⁄ dτ = −ρg div wg, with account for

which we transform Eq. (1) as

d
dτ

 (ρgig) + ρgig div wg = − div q + 
dp

dτ
 . (2)

In collapse, the vector fields in the bubble and the surrounding liquid are spherically symmetric wi



wi, 0, 0



,

qi


q, 0, 0


 ; therefore, in the spherical system of coordinates we write for the divergence of the vectors of velocity and

density of the heat flux

div wg = 
1

r
2 
∂

∂r
 (r2

wg) ,   div qg = 
1

r
2 
∂

∂r
 (r2

qg) .

We make the assumption that in vapor condensation the function ρgig remains uniform inside a bubble; then
Eq. (2) takes the form

r
2
 

d

dτ
 (ρgig) + 

∂
∂r

 (ρgigr
2
wg) = 

∂
∂r

 



r
2λg 

∂Tg

∂r




 + r

2
 
dp

dτ
 . (3)

We integrate (3) with respect to the radius going from 0 to a (the bubble radius), allow for the conditions at the cen-
ter and on the surface of the bubble

wg (0) = 0 ,   
∂Tg

∂r



 r=0

 = 0 ,   wg (a) = wa ,   − λg 
∂Tg

∂r



 r=a

 = − λliq 
∂Tliq

∂r



 r=a

 , (4)

and obtain the equation of heat influx to the bubble:

d

dτ
 (ρgig) + 3 

ρgigwa

a
 = 3 

λg

a
 
∂Tg

∂r



 r=a

 + 
dp

dτ
 . (5)

At some stages of compression the vapor in the bubble can go over to the superheated state. If the vapor

pressure is much smaller than critical, the vapor still obeys the Mendeleev–Clapeyron equation. In this case, ρgig =

ρgcpTg = 
γ

γ − 1
 p and Eq. (5) changes over to the equation for gas pressure in the bubble [2]:

dp

dτ
 = 3 (γ − 1) 

λliq
a

 
∂Tliq

∂r



 r=a

 − 3γ 
pwa

a
 . (6)

We apply the equation of heat influx (5) to wet vapor. The density of wet vapor is ρg = 1/vg and its specific
volume vg and enthalpy ig are determined by the equalities (the effect of surface curvature is neglected)

vg = (1 − χ) v′ + χv′′  ,   ig = (1 − χ) i′ + χi′′ ,
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where ′ and ′′ refer to the parameters of saturated liquid and dry saturated vapor on the boundary curve and χ =
(vg − v′)/(v′′  − v′).

We calculate the derivative from Eq. (5):

d

dτ
 (ρgig) = 

1

vg

 
dig

dτ
 − 

ig

vg
2 

dvg

dτ
 . (7)

The state of wet vapor is specified by two parameters: the degree of dryness χ and the saturation temperature
T, i.e., vg(χ, T) and ig(χ, T); the total differentials of these functions are

dvg = 




∂vg

∂χ


 T

 dχ + 




∂vg

∂T



 χ

 dT ,   dig = 




∂ig
∂χ



T

 dχ + 




∂ig
∂T



 χ

 dT , (8)

and the partial derivatives are found from the form of the functions vg and ig:





∂ig
∂χ



T

 = ig
′′  (T) − ig

′  (T) = l (T) ,   




∂ig
∂T



 χ

 = 
di′

dT
 + χ 

dl

dT
 = c′ + χ 

dl

dT
 ,





∂vg

∂χ


T

 = v′′ (T) − v′ (T) ,   




∂vg

∂T



 χ

 = 
dv′

dT
 + χ 

d

dT
 (v′′ − v′) ,

with all thermodynamic functions on the boundary curve being dependent solely on the temperature of saturation.
We substitute these derivatives into the expressions for the total differentials (8); then we calculate the deriva-

tive (7) and substitute it into Eq. (5); as a result we have

















c′ + χ 

dl

dT
 − 

ig (χ, T)
vg (χ, T)

 



dv′

dT
 + χ 

d

dT
 (v′′ − v′)











 
T (v′′ − v′)

l
 − vg (χ, T)










 
dp

dτ
 =

= 3 
v (χ, T) λliq

a
 
∂Tliq

∂r



 r=a

 − 3 
ig (χ, T) wa

a
 − 



l − 

ig (χ, T)
vg (χ, T)

 (v′′  − v′)



 
dχ
dτ

 . (9)

Here, in transformations we used the Clapeyron–Clausius equation 

dp

dT
 = 

l

T (v′′  − v′)
 . (10)

The equation of heat influx (9) involves the following unknowns: p, χ, T, wa, a, and λliq(∂Tliq
 ⁄ ∂r) r=a, i.e., six in all.

Consequently, this equation must further be supplemented by five equations. One of these is the above-mentioned
Clapeyron–Clausius equation (10), and its solution is (it is taken that within a narrow range of pressures l = const)

p (T)
p0

 = exp 


l
Rµ

 


1
T0

 − 
1
T







 , (11)

where the parameters with the subscript 0 refer to some reference point on the phase curve of saturation. Within a
wide range of pressures, up to the critical one, Eq. (10) can be integrated numerically as well, if the function l(T) is
known.

We find the relation between the degree of vapor dryness χ and the bubble parameters. Wet vapor is a mix-
ture of liquid droplets and dry saturated vapor. At saturation pressures far from critical, the dry saturated vapor still
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obeys the Mendeleev–Clapeyron equation. Let the bubble with an initial radius r0 be filled with the dry saturated
vapor, i.e., χ = 1. The vapor pressure in the bubble is

p = ps0 − 2 
Σ
a

 
vliq

vg − vliq
 C ps0 .

Since, in the model adopted, the condensation of vapor occurs inside the bubble but not on its surface, during the col-
lapse the bubble mass remains constant at any degree of dryness:

m = 
4
3

 πξ0
3ρliq = 

4
3

 πa0
3
 

ps0
RµTs0

 , (12)

where ξ0 is the bubble radius in the case of complete condensation of vapor in it, i.e., at χ = 0.
During the collapse, the gas component of the wet vapor can be within the volume Vv − Vliq. Then, the Men-

deleev–Clapeyron equation is written in the form p(Vv − Vliq)  = χmRµT or, with allowance for the relations Vliq =
(1 − χ)m ⁄ ρliq and Vv = (4/3)πa3, as

pa
3
 − (1 − χ) ξ0

3
p = χps0a0

3 ⁄ Ts0 .

If we introduce the given variables a∗  = a(τ)/a0, p∗  = p(τ)/ps0, and ϑ∗  = T(τ)/Ts0, then the above equation is rewritten
as

p∗ a∗
3
 − (1 − χ) p∗  (ξ0

 ⁄ a0)
3
 = χϑ∗  ,

whence we find the degree of dryness

χ = 
p∗  (a∗

3
 − (ξ0

 ⁄ a0)
3)

ϑ∗  − p∗  (ξ0
 ⁄ a0)

3  . (13)

In particular, if the condensation of vapor in the bubble follows the isobar, p∗  = 1, and ϑ∗  = 1, then for χ from (13)
we obtain the expression χ = (a∗

3 − (ξ0
 ⁄ a0)

3)/(1 − (ξ0
 ⁄ a0)3). On the right-hand branch of the boundary curve liquid–

vapor a∗  = 1 and χ = 1 and on its left-hand branch a∗  = (ξ0
 ⁄ a0) and χ = 0.

In the case where the bubble begins to collapse from the state of saturated vapor, and consequently, its initial
radius a0 does not correspond to the vapor state on the right-hand branch of the boundary curve, it must be recalcu-
lated by the condition of mass constancy (12):





as0

a0





3

 = 
p0

 ⁄ ps0

T0
 ⁄ Ts0

 = 
p∗ 0

T∗ 0
 .

The following relation, which supplements (9), is the Rayleigh–Lamb equation [2] (it characterizes the dynamics of the
bubble):

a 
d

2
a

dτ2 + 
3

2
 




da

dτ





2

 + 4νliq 
1

a
 
da

dτ
 + 2 

Σ
ρliqa

 = 
p (τ) − p∞

ρliq

 , (14)

where p(τ) is the vapor pressure in the bubble and p∞ is the pressure at infinity in the surrounding liquid.
In addition to the equations presented, it is necessary, in order to describe the process, to invoke the equation

of heat influx for the surrounding liquid:
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ρliqcliq 




∂Tliq

∂τ
 + wliq 

∂Tliq

∂r




 = 

1

r
2 
∂

∂r
 



r
2λliq 

∂Tliq

∂r




 + 12µliq 

wliq
2

r
2  , (15)

where the radial velocity wliq(r, τ) is related to the velocity of the phase interface in terms of the continuity equation:

wliq (r, τ) = wa (τ) 


a
r




2

 . (16)

Expressions (9), (10), (13), (14), and (15) with wa = a, and relation (16) represent the closed system of equa-
tions which describes thermal and hydrodynamic processes in the collapse of the cavitation bubble.

Let the vapor bubble be first in the equilibrium state and its parameters correspond to dry saturated vapor:

τ = 0 :   p (0) = ps0 ,   T (0) = Ts0 ,   a (0) = as0 ,   ps0 − p∞ = 2 
Σ

as0
 .

Then at infinity there arises the pressure jump δp∞, which disturbs the system from the equilibrium. We represent the
right-hand side of (14) as

p (τ) − p∞ = p (τ) − p (0) + p (0) − p∞ − δp∞ = p (τ) − p (0) + 2 
Σ

as0
 − kp (0) = p (0) (p∗  − (k + 1)) + 2 

Σ
as0

 ;

when k > 0 the bubble collapses, and when −1 < k < 0 it grows. In the general case, k = k(τ).
With account for the introduced disturbance parameter it is convenient to present Eq. (14) in the dimension-

less form

a∗  
d

2
a∗

dτ∗
2

 + 
3

2
 




da∗

dτ∗





2

 + 
4

Re
 

1

a∗
 
da∗

dτ∗
 + 

2

We
 
1 − a∗

a∗
 = p∗  − (k + 1)  , (17)

where

Re = 
as0w0

νliq
 ,   We = 

ρliqw0
2

Σ ⁄ as0
 ,

Here τ∗  = τ ⁄ τ0 is the reduced time and w0 = √p(0) ⁄ ρliq  and τ0 = as0
 ⁄ w0 are the characteristic values of the velocity

and time.
We pass over to the mobile system of coordinates η∗  = r/a(τ) and by the transition formulas [2]

∂
∂r

 ( ) = 
1

a (τ)
 
∂
∂η∗

 ( ) ,   




∂
∂τ


 r

 = 




∂
∂τ


 η∗

 − 
a
.

a
 η∗  

∂
∂η∗

 ( ) ,

and expression (16) we transform (15) as

∂θ∗

∂τ∗
 + 

a
.
∗

a∗
 




1

η∗
2 − η∗




 
∂θ∗
∂η∗

 = 
1

Pe
 

1

a∗
2 







∂2θ∗

∂η∗
2  + 

2

η∗
 
∂θ∗
∂η∗







 + 12 

Ec

Re
 




a
.
∗

a∗





2

 
1

η∗
6 , (18)

where θ∗  = Tliq(r, τ) ⁄ Tliq0 is the reduced temperature in the liquid phase and

Pe = 
as0w0

λliq

ρliqcliq

 ,   Ec = 
w0

2

cliq Tliq0
 .
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We express the derivative dp ⁄ dτ from (9) and write it a reduced form:

dp∗

dτ∗
 = 

1

ps0F (χ, T)
 






3 
λliqTs0τ0

as0
2

 vg (χ, T) 
1

a∗
2

∂θ∗
∂η∗






 η∗ =1

 − 3ig (χ, T) 
w∗

a∗
 − 






l − ig (χ, T) 

v′′ − v′

vg (χ, T)







 
dχ

dτ∗
  






 . (19)

Here, the function F(χ, T) is determined by the equality

F (χ, T) = c′ (T) + χ 
dl

dT
 − 

ig (χ, T)
vg (χ, T)

 




dv′

dT
 + χ 

d

dT
 (v′′  − v′)




 
T (v′′  − v′)

l
 − vg (χ, T) .

In the case of saturated vapor, Eq. (6), which in the reduced variables has the form

dp∗

dτ∗
 = 3 (γ − 1) 

λliqTliqτ0

ps0a0
2

 
1

a∗
2
 
∂θ∗
∂η∗







η∗ =1

 − 3γ 
p∗ w∗

a∗
 ,

must be used instead of (19).
We also present the Clapeyron–Clausius equation in the dimensionless form

dp∗

dϑ∗
 = 

l

ps0 (v′′  − v′)
 , (20)

where ϑ∗  = T ⁄ Ts0 is the reduced temperature of the vapor in the bubble.
We formulate the initial conditions for the unknown functions:

τ∗  = 0 :   a∗  = 1 ,   w∗  = 0 ,   θ∗  (0, η∗ ) = 1 ,   ϑ∗  (0) = 1 ,   p∗  = 1 ,   η∗  ≥ 1 . (21)

The conditions at infinity are

η∗  = ∞ :   θ∗  (τ∗ , ∞) = 1,

the conditions on the bubble surface are

η∗  = 1 :   θ (τ∗ , 1) = ϑ∗  (τ∗ ) ,   q∗  = − 
∂θ∗
∂η∗



 η∗ =1

 ,   w∗  = a
.
∗  .

Moreover, when k > 0, w∗  < 0, and 0 ≤ χ ≤ 1 the bubble compresses and when k < 0, w∗  > 0, and χ < 1 it grows.
The derived system of equations can be integrated numerically. The ordinary differential equations of the sys-

tem were integrated by the Runge–Kutta scheme of the fourth order of accuracy, and Eq. (18), which provides a rela-
tion with other equations of the system through the heat-flux density on the bubble surface, was solved by the
finite-difference method according to the explicit scheme

θn+1,m = θn,m + 
δτ

(δη)2
 



− 

wn

an

 




1

(mδη)2
 − mδη




 (θn,m+1 − θn,m) δη + 

1

Pe an
2 



θn,m+1 − 2θn,m + θn,m−1 + 

+ 
2

m
 (θn,m+1 − θn,m) δη




 + 12 

Ec

Re
 




wn

an





2

 
1

m
6δη4

 



 ,
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where δτ = τ∗  ⁄ N, δη = L∗  ⁄ M, L∗  is an infinitely remote point (in the calculations L∗  = 2), and N and M we selected
experimentally, proceeding from the stability of the computation process. Most calculations in the collapse mode were
made at N = 10,000 and M = 10 and in the evaporation mode at N = 50,000 and M = 20. The grid functions are
an = a∗ (nδτ), wn = w∗ (nδτ), θn,0 = ϑ∗ , n 2 [0, N], and m 2 [0, M]. Below, we discuss the results of the numerical
study of the reduced system of equations.

Calculations were made for Freon F-11 bubbles with properties according to [3] in the medium of liquid gal-
lium: the initial radius of the vapor bubble was set equal to a0 = as0 = 3⋅10−3 m; thus the droplet radius was ξ0 =
7.81⋅10−5 m and cliq = 4.18 kJ/(kg⋅K). The scales of the quantities were w0 = 1.53 m/sec and τ0 = 1.96⋅10−3 sec, the
problem criteria Re = 4590, Pe = 31,800, and Ec = 2.75⋅10−5, and the disturbance parameter k was varied in the cal-
culations.

Figure 1 presents the radius–time dependence in the action of different pressure pulses on the system. The in-
tersection of the curves with the abscissa axis corresponds to the time of complete condensation of the vapor in the
bubble with a finite reduced radius ξ0

 ⁄ a0 = 0.026. The total reduced time of bubble collapse is τ∗  > 10 (curve 1), τ∗
= 8.4 (2), and τ∗  = 2.2 (3). The radius–time curve indicates that in the process of vapor bubble collapse there take
place volume oscillations, with the amplitude of oscillations being the larger the higher the disturbing effect.

Figure 2 depicts, in the reduced coordinates, the velocity–time graph for the vapor bubble collapsing due to
the pressure disturbance at k = 1. As in the previous case, the velocity of the phase interface also experiences oscilla-
tions with increasing amplitude. This special feature revealed on vapor bubbles is not typical of damping oscillations
of gas bubbles. The fact that the duration of the phase of bubble compression is larger than that of the expansion
phase engages our attention; this indicates greater sluggishness of the process of vapor condensation (compression) as
compared with the processes of evaporation (expansion). At the compression stage there takes place vapor superheat-
ing, accompanied by pressure increase, which impedes the collapse of the bubble. The reduced velocity of the phase
interface reaches the value w∗  D 1 (or w D 1.5 m/sec); this value is two orders smaller than those in the case of col-
lapse obtained by the scheme of the inertia mode.

Figure 3 shows the time–distance curve of the volumetric flow rate A∗  = w∗ a∗
2 of the phase interface on the

bubble radius at k = 1. It is seen from the figure that in each oscillation the bubble passes through the point of maxi-
mum flow rate, which decreases with the number of oscillations. In particular, the first maximum is attained at a∗ cr =
0.83 and is A∗ cr = 0.395. The pressure in the bubble during the collapse is characterized by Fig. 4. Overshoots in the
pressure correspond to the moments of highest bubble compression and multiply exceed the initial pressure. A purely
inertia mode of bubble collapse with Pe ⁄ Ja << 1 precedes the phase of increased pressure in the bubble and that with
Pe ⁄ Ja >> 1 the phase of maximum pressure, which indicates a thermal mode. In particular, the last oscillation of the
bubble is accompanied by the overshoot in pressure to p∗ max = 30 (curve 3).

Following the pressure, the vapor temperature also experiences oscillations; the character of the variation of
the vapor temperature fully corresponds to the pressure curve.

Fig. 1. Dependence of the reduced radius a∗  of the vapor bubble on the re-
duced time τ∗  at different disturbance actions: 1) k = 0.5; 2) 1; 3) 2.

Fig. 2. Dependence of the reduced velocity of the phase interface w∗  on the
reduced time τ∗  at k = 1.
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The amplitude of vapor temperature oscillations increases with increase in the disturbing pressure, with their
maxima falling at the moments of highest compression of the bubble. The maximum value of the reduced temperature
at k = 1 reaches ϑ∗  = 1.5, which corresponds to 176oC at an initial vapor temperature of 23oC. At the moments when
the highest temperature is attained in the bubble, intense withdrawal of heat to the surrounding liquid begins.

Figure 5 presents the most important parameter — the dependence of the degree of vapor dryness on time.
The curves reveal the hidden special feature in the process of vapor bubble collapse: the evaporation of the condensate
occurs in the bubble during some phases. As a whole, the degree of dryness decreases as the bubble collapses, thus
reaching a zero value in the complete condensation of vapor. It is noteworthy that the latter state of the vapor in the
bubble is not equilibrium but resembles the state of a shock-compressed liquid droplet.

The information on heat exchange between the bubble and the surrounding liquid is presented predominantly
by the Nusselt number. Actually, on the one hand, the heat-flux density on the bubble surface is

qΣ = − λliq 




∂Tliq

∂r



 r=a

 = − 
λliqTliq
as0a∗

 
∂θ∗
∂η∗



 η∗ =1

 ,

and, on the other hand, it is expressed by the Newton–Richman law:

qΣ = α (Tliq0 − Tg) = αTliq0 (1 − ϑ∗ ) .

Equating these expressions, for the Nusselt number on the bubble surface we obtain (Fig. 6)

Fig. 3. Dependence of the reduced flow rate of the phase interface A∗  of the
bubble on the radius a∗  at k = 1.

Fig. 4. Dependence of the reduced vapor pressure p∗  in the bubble on the re-
duced time τ∗ : 1) k = 0.5; 2) 1; 3) 2.

Fig. 5. Dependence of the degree of dryness of the vapor in the bubble χ on
the reduced time τ∗ : 1) k = 0.5; 2) 1; 3) 2.
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NuΣ = 
αas0

λliq
 = − 

1

a∗  (1 − ϑ∗ )
 
∂θ∗
∂η∗



 η∗ =1

 .

The Nusselt number follows the oscillations of the volume of the bubble during its collapse. The increase in
the amplitude of the Nusselt number depending on the number of oscillations attracts our attention. The maximum
value corresponds to the time instants of highest compression of the bubble and the minimum value to the highest ex-
pansion. The increase in the amplitude of NuΣ can, apparently, be explained by the decrease in the bubble radius in
compression and by the maximum temperature gradient at these time instants. Positive values of NuΣ point to the fact
that the heat flux is unidirectional — from the bubble to the liquid.

By and large, the temperature field in the surrounding liquid remains uniform. However, the liquid layers ad-
jacent to the phase interphase at a distance of about one to two space steps (1/10 of the radius) experience fluctuations
of the temperature in accordance with the vapor temperature: the highest heating of these layers is reached at the in-
stants of highest compression of the bubble.

The results obtained allow estimation of the shock increase of the pressure in collapse of the cavitation bub-
ble. The hydraulic shock from the vapor bubble arises after passing the point of maximum flow rate (see Fig. 3).

The kinetic energy of the surrounding liquid at these instants is

E = ∫ 
Vv

∞
1

2
 ρliqwmax

2
dV = 2πρliq 

A∗ cr
2

a∗ cr
 a0

3
w0

2
 ,   A∗ cr = a∗ cr

2
w∗  ;

the potential energy of the shock-compressed liquid in the volume Vv = 3/4πa∗ cr
3  is determined from the Hooke law

Π = 
1
2

 χelpmax
2

 
4
3

 πa∗ cr
3

a0
3
 .

Equating the energies, for the shock pressure we find

pmax = 
A∗ cr

a∗ cr
2

 √3ρliqEel  w0 .

The calculation for liquid gallium by this formula by the first critical point of the flow rate–radius curve A∗ cr = 0.395,
a∗ cr = 0.83, w0 = 4.05 m/sec, and Eel = 2.25⋅109 1/Pa (Fig. 3) gives pmax = 1.41⋅107 Pa. (If we relate the elastic po-
tential energy to the volume of the liquid droplet obtained after complete condensation of the vapor, we find for the
shock pressure pmax = 8.6⋅1012 Pa.)

The above-given system of equations of dynamics and heat transfer of the bubble with wet vapor describes
the process of boiling-up of a saturated liquid droplet in pressure release. As an example, we calculated the system a

Fig. 6. Dependence of the Nusselt number NuΣ on the reduced time τ∗ : 1) k
= 0.5; 2) 1; 3) 2.
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droplet of liquid Freon F-11–liquid gallium, which initially is in equilibrium at a temperature t0 = 30oC (ps0 =
1.26⋅105 Pa). Then, in the surrounding liquid, the pressure decreased jumpwise by δp = 0.256⋅105 Pa (k = −0.2) and
the droplet began to boil-up, thus forming a bubble with wet vapor. The initial radius of the droplet was set to be
equal to ξ0 = 1 mm.

Figure 7 illustrates some parameters which characterize the process of bubble growth. The curve of the degree
of vapor dryness shows that in boiling-up of the liquid droplet the oscillations of the parameter arise only at the be-
ginning of the process, when Pe ⁄ Ja C 1; then, as this number decreases, the oscillations damp and the bubble continues
to grow in a purely thermal mode. The Nusselt number (curve 3) follows the oscillations of the bubble parameters (ra-
dius, pressure, temperature) at the dynamic stage of the process; at the thermal stage of the process the Nusselt num-
ber takes the constant value NuΣ = −0.0426. Within the entire time ranges the heat flux is directed from the liquid to
the bubble.

Figure 8 shows the dependence of the temperature of the vapor in the bubble on time in pressure release. At
the thermal stage, a constant temperature head of about 6oC, which maintains the bubble growth, reaches a steady
state.

The model considered also describes the collapse of the cavitation bubble in its own liquid, if we assume that
all vapor which condensed on the phase interphase is related to the mass of the bubble but not to the surrounding liq-
uid.

CONCLUSIONS

1. Relaxation of the bubble to the liquid state occurs under the action of dynamic and thermophysical proc-
esses in the bubble–liquid system; the relative contribution of these processes is determined by the number Pe/Ja and
is not the same at different phases of the process.

2. Relaxation of the collapsing vapor bubble is represenred by a number of sharp oscillations of the volume,
which are of a shock nature, with subsequent increase in the amplitude of pressure and temperature at the end of each
period of oscillations.

3. Overshoots in pressure in the phase of compression of the bubble are accompanied by a substantial super-
heating of the vapor, which causes intense heat withdrawal to the surrounding liquid. The phases of compression give
way to short phases of expansion with supercooling of the vapor inside the bubble and repumping of heat from the
liquid to the bubble.

4. The length of the phases of bubble expansion is less than that of the compression phases. Bubble expan-
sion is accompanied by partial evaporation of the already condensed vapor.

Fig. 7. Dependence of the degree of dryness of the vapor in the bubble χ⋅103

(1), the number (Pe/Ja)/20 (2), and the Nusselt number (3) on the reduced time
τ∗  of the process in bubble growth and at k = −0.2.

Fig. 8. Dependence of the temperature of the vapor in the bubble t on the re-
duced time τ∗  in pressure release and at k = −0.2.
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5. The length of the compression phases is stipulated by external heat exchange of the bubble, which greatly
decreases the rate of bubble collapse as compared with the rates of collapse in the purely inertia mode.

6. During the process of collapse, the bubble–liquid system passes a number of critical points on the curve
flow rate–radius; each of these points produces the conditions for the hydraulic shock.

7. Deteriorated external heat exchange between the bubble and the surrounding liquid transfers the system to
the mode of adiabatic damping oscillations and completely eliminates the possibility of hydraulic shock.

NOTATION

τ, time, sec; a, bubble radius, m; r, current radius, m; V, volume, m3; l, specific heat of phase transition, J/kg;
Q, amount of heat, J; λ, thermal conductivity, W/(m⋅K); T, temperature, K; ρ, substance density, kg/m3; c, specific
mass heat capacity, J/(kg⋅K); i, specific enthalpy, J/kg; p, absolute pressure, Pa; q, vector of heat-flux density, W/m2;
w, velocity vector, m/sec; γ, adiabatic index; v, specific volume, m3/kg; χ, degree of dryness; ξ0, droplet radius, m;
Rµ, specific gas constant of vapor, J/(kg⋅K); µ, dynamic coefficient of liquid viscosity, Pa⋅sec; ν, kinematic coefficient
of viscosity, m2/sec; Σ, coefficient of surface tension, N/m; k, parameter of pressure disturbance; θ, reduced tempera-
ture in the liquid phase; ϑ , reduced temperature in the vapor phase; η, reduced space variable; M, N, grid parameters;
L, infinitely remote point, m; A, volumetric flow rate of the phase interface, m3/sec; α, heat-transfer coefficient,
W/(m2⋅K); E, kinetic energy, J; Π, elastic potential energy, J; Eel, volumetric elasticity modulus of the liquid phase,
1/Pa; Nu, Nusselt number; Ec, Eckert number; We, Weber number; Re, Reynolds number; Pe, Peclet number; Ja,
Jacob numbers. Indices: 0, characteristic or initial value of the physical quantity; g, parameters of the gas or vapor
phase; Σ, parameters on the phase interface; χ, constancy of the degree of dryness; a, kinematic parameters on the
bubble surface; v, vapor, bubble; *, dimensionless parameters; ∞, parameters at infinity; s0, parameters of the dry satu-
rated vapor; m, n, grid indices; cr, critical; el, elastic; max, maximum; primes, phase indices on the saturation curve;
liq, liquid.
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